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ABSTRACT 

In this paper, we study an ecological model with a tritrophic food chain composed of a 
classical Lotka-Volterra functional response for prey and predator, and a Holling type-II 
functional response for predator and superpredator. There are two equilibrium points of the 
system. In the parameter space, there are passages from instability to stability, which are 

called Hopf bifurcation points. For the first equilibrium point, it is possible to find 
bifurcation points analytically and to prove that the system has periodic solutions around 
these points. Furthermore the dynamical behaviors of this model are investigated. The 
dynamical behavior is found to be very sensitive to parameter values as well as the 
parameters of the practical life. Computer simulations are carried out to explain the 
analytical findings. 
 
Keywords: Food chain model, Lotka-Volterra model, Holling type-II functional response, 

Hopf bifurcation 

 

 

INTRODUCTION 

As we know that life as an ecosystem is very complex. Most of the 
ecological systems have the elements to produce bifurcations and dynamics 

behavior, and food chains are ecosystems with extremely simple structure. 

Modeling efforts of the dynamics of food chains which are initiated long ago, 
confirm that food chains have very rich dynamics. In the first place, Lotka 

(1925) and Volterra (1926) independently developed a simple model of 

interacting species that still bears their joint names which can be stated as  
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where x is a prey, y  is a predator, the predator y  preys on x , 1a  is the prey 

growth rate in the absence of the predators, 1b  is the capture rate of prey by 

per predator, 2b  is the rate at which each predator converts captured prey 

into predator births and 2a  is the constant rate at which death in the absence 

of prey. They showed that ditrophic food chains (i.e. prey-predator systems) 

permanently oscillate for any initial condition if the prey growth rate is 

constant and the predator functional response is linear. 
 

Based on experiments, Holling (1965), Hsu et al. (2001), Shuwen 

and Lansun (2005), Shuwen and Dejun (2009) suggested three different 
kinds of functional responses for different kinds of species to model the 

phenomena of predator, which resulted the standard Lotka-Volterra system 

more realistic. Biologically, it is quite natural for the existence and 

asymptotical stability of equilibria and limit cycles for autonomous 
predator–prey systems with these functional responses. 

 

Almost each of the food chain models considered in ecological 
literature is constructed by invoking same type of functional responses for 

( , )x y  and ( , )y z populations. But a different selection of functional response 

would be perhaps more realistic in this context. From this point of view, we 
have considered a classical (nonlogistic)  Lotka-Volterra functional response 

for the species x  and y  and a Holling type-II functional response for the 

species y  and .z  

 

 

MODEL SYSTEM 

The classical food chain models with only two trophic levels are 

shown to be insufficient to produce realistic dynamics (Freedman and 

Waltman (1977); Hastings and Powell (1991); Hastings and Klebanoff  
(1993); Dubey and Upadhyay (2004)). Therefore, in this paper, we consider 

three species food chain interaction. With non dimensionalization, the 

system of three species food chain can be written as  
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where x , y , and z denote the non-dimensional population density of the 

prey, predator, and top predator respectively. The predator y  preys on x  

and the predator z preys on y . Furthermore, 1 2 3 1 1 2, , , , ,a a a b c c  and D  are the 

intrinsic growth rate of the prey, the death rate of the predator, the death rate 

of the top predator, predation rate of the predator, the conversion rate, the 
maximal growth rate of the predator, conversion factor, and the half 

saturation constant respectively. 

 
 

EQUILIBRIUM POINT ANALYSIS 

According to Hilborn (1994) and May (2001), the equilibrium points 

of (2) denoted by ( , , ),E x y z  are the zeros of its nonlinear algebraic system 

which can be written as  
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By considering the positivity of the parameters and the unknowns, 

we have two positive equilibrium points given by 0 (0,0,0),E and 

1 1 1( , ,0)E x y  with  
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and one negative equilibrium point 2 2 2(0, , )E y z  with  
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2 3
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= −
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is not an interior equilibrium point of the system (2). 

 
 

STABILITY OF EQUILIBRIUM POINTS 

The dynamical behavior of equilibrium points can be studied by 

computing the eigenvalues of the Jacobian matrix J of system (2) where 
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 At most, there exist two positive equilibrium points for system (2). 

The existence and local stability conditions of these equilibrium points are as 

follows. 
 

1. The Jacobian matrix (4) at the equilibrium point E0 (0, 0, 0), is 

 

1

2

3

0 0

(0,0,0) 0 0

0 0

a

J a

a

 
 = − 
 − 

                       (5) 

 

The eigenvalues of the Jacobian matrix (5) are 1 1aλ = , 2 2aλ = − , and 

3 3.aλ = − Hence, the equilibrium point 0E  is a saddle point. 
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2. The Jacobian matrix (4) at the equilibrium point 1 1 1( , ,0),E x y  is 
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The eigenvalues of the Jacobian matrix (6) are 

 

 

 
                (7) 

 

                 
     

1 1 1( , ,0)E x y  is locally and asymptotically stable if   

 

   1 2 1 3 3 1a c a a a b D< + .       (8) 

 

 

HOPF BIFURCATION POINT 

When we are interested to study periodic or quasi periodic behavior 

of a dynamical system, we need to consider the Hopf bifurcation point. The 
change in the qualitative character of a solution as a control parameter is 

varied and is known as a bifurcation. The dynamical system generally 

(Hilborn (1994) and May (2001)) can be written as                    

                                                           

 ( , )v F v µ=ɺ                                                 (9) 

 

where 
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According to Hilborn (1994) and May (2001), the system (2) can be 

written in the form (9)-(10), if an ordered pair 0 0( , )v µ satisfies the conditions 

 

(i)  0 0( , ) 0F v µ = , 

(ii)  ( , )J v µ has two complex conjugate eigenvalues 1,2 ( , ) ( , )a v ib vλ µ µ= ± , 

        around 0 0( , )v µ , 

 

(iii)  0 0( , ) 0a v µ = , 0 0( , ) 0a v µ∇ ≠ , 0 0( , ) 0b v µ ≠ , and 

 

(iv) the third eigenvalues 3 0 0( , ) 0vλ µ ≠ then 0 0( , )v µ is called a Hopf  

bifurcation point. 

 

 For the system (2), the equilibrium points 0 (0,0,0),E and 

1 1 1( , ,0),E x y  satisfy the condition 0 0( , ) 0F v µ =  and for the equilibrium point 

1 1 1( , ,0),E x y we have two complex conjugate eigenvalues (7) with the real 

part of the eigenvalues are zero. The last condition 3 0 0( , ) 0vλ µ ≠ is satisfied 

if  

 

 1 2 1 3 3 1a c a a + a b D≠ . (11) 

 

The equations (8) and (11) are satisfied if 3a  is chosen not as 

 

 (12) 

 
 

  

Hence, 1E  is stable for 
03 3a a>  and unstable for 

03 3 .a a< The point 

0 0( , )v µ which corresponds to 
03 3a a= , is a Hopf bifurcation point. This 

Hopf bifurcation states sufficient condition for the existence of periodic 

solutions. As one parameter is varied, the dynamics of the system change 
from a stable spiral to a center to unstable spiral (see Table 1).  

 

 

NUMERICAL SIMULATION 

Analytical studies always remain incomplete without numerical 

verification of the results. In this section, we present numerical simulation to 
illustrate the results obtained in previous sections. The numerical simulation 

0
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was implemented in MATLAB R2010a. The numerical experiments are 

designed to show the dynamical behavior of the system in three main 

different sets of parameters:  

 

I. The case 
03 3

a a<         

II. The case 
03 3

a a=   

III. The case 
03 3

a a> . 

 

The coordinates of equilibrium points and the corresponding eigenvalues can 
be found in Table 1. To show the change dynamics of the system (2), the 

parameter set { } { }1 2 1 2 1 2
, , , , , , 0.5,0.5,0.5,0.5,0.6,0.75,25a a b b c c D = is fixed 

while varied. The calculation for the parameter set given Hopf bifurcation 

point 
03

0.028846a = as a reference parameter (12). 

 

I. The case 
03 3

a a<  

For the case  
03 3

a a<  (see Table 1) two eigenvalues for 
1

E are pure 

imaginary initially spiral stability corresponding to the center manifold 

in xy plane and one positive real eigenvalue corresponding with 

unstable one dimensional invariant curve in z  axes. Hence the 

equilibrium point 
1

E  is a locally unstable spiral source and 
0

E is a 

saddle point with real eigenvalues that having opposite sign. In this case 

the top predator z  can survive, growing periodically unstable. On the 

other hand, prey x  and predator y  persist and have populations that 

vary periodically over time with a common period. The plot of the 

solution in Figure 1 exhibits this behavior. 

 

 

 

 

 

 

 

 

 

 
(a) Phase space and population time series for 

3
0.01a =  
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(b) Phase space and population time series for 
3

0.02a =  

 
 
 

 

 
(c) Phase space and population time series for 

3
0.027a =  

 
Figure 1: The solution for 

03 3
a a<  

 

II. The case 
03 3

a a=  

For the case 
03 3

a a= , the equilibrium 
1

E  has three eigenvalues with 

zero real part corresponding with stable center point in xy plane        

(see Table 1). In this case, top predator decreases stably periodic. On 

the other hand prey and predator growth increases over time. The plot 
of the solution in Figure 2 exhibits this behavior. 
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TABLE 1: Numerical experiment of stability equilibrium point 

 
The 

case 

Parameter

s 

Equilibrium point Eigenvalues 

0E  
1E  

0E  
1E  

03 3a a<

 

3 0.01a =  0, 0,0  1.00000, 1.00000, 0 ± 0.50000, 

-0.01000 

± 0.50000 i, 

0.01885 

 
3 0.02a =  0, 0,0  1.00000, 1.00000, 0 ± 0.50000, 

-0.02000 

± 0.50000 i, 

0.00885  

 3 0.027a =  0, 0,0  1.00000, 1.00000, 0 ± 0.50000, 

-0.02700 

± 0.50000 i, 

0.0018461 

03 3a a=

 

3 0.028846a =

 

0, 0,0  1.00000, 1.00000, 0 ± 0.50000,  

-0.028846 

± 0.50000 i,  

0 

03 3a a>

 

3 0.03a =  0, 0,0  1.00000, 1.00000, 0 ± 0.50000, 

 -0.03000 

± 0.50000 i, 

-0.00115 

 
3 0.1a =  0, 0,0  1.00000, 1.00000, 0 ± 0.50000, 

 -0.10000 

± 0.50000 i, 

-0.07115 

 3 1a =  0, 0,0  1.00000, 1.00000, 0 ± 0.50000, 

 -1.000000 

± 0.50000 i, 

-0.97115 

 
 

 
 

         (a) Phase space for 
03a = 0.028846                                   (b) Time series for  

03a = 0.028846 

 
Figure 2: The solution for 

03 3
a a=  

 

III. The case 
03 3

a a>  

For the case 
03 3

a a>  (see Table 1) two eigenvalues for 
1

E  are pure 

imaginary initially spiral stability corresponding to the center manifold 

in xy  plane and one negative real  eigenvalue corresponding with stable 

one dimensional invariant curve in z  axes. Hence the equilibrium point 

1
E is locally stable spiral sink and 

0
E  is a saddle point with real 

eigenvalues having opposite sign. In this case the top predator dies. On 
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the other hand, prey x  and predator y  persist and have populations that 

vary periodically over time with a common period. The plot of the 

solution in Figure 3 exhibits this behavior. 
 

 
 

(a) Phase space and population time series for a3 = 0.03 
 

 

 
 

(b) Phase space and population time series for  a3 = 0.1 

 
 

 
 

(c) Phase space and  population time series for a3 = 1 

 

Figure 3: The solution for 
03 3

a a>  
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CONCLUSIONS 

In this paper, ecological model with a tritrophic food chain 

composed of a classical Lotka-Volterra functional response for prey and 
predator, and a Holling type-II functional response for predator and 

superpredator is studied. In this paper, three species food chain model are 

analyzed and possible dynamical behavior of this system is investigated at 
equilibrium points. It has been shown that, the solutions possess Hopf 

bifurcations. The overall long-term persistence of top species z  in (2) hinges 

solely on the parameters 
1 3 1 2
, , ,a a b c   and .D  In particular, if 

03 3
a a≥ , then 

species z  decrease over time to die out, while if 
03 3

a a< , then species z  

survives. On the other hand species prey x  and middle predator y  can 

persist under all conditions. Both analytical and numerical simulations show 

that in certain regions of the parameter space, the model is sensitively 

dependent on the parameter values.  
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